Polarized synchrotron emission from post-disruption runaway electrons in the JET C38 campaign

RA Tinguely1, N Hawkes2, E Rachlew3, M Hoppe4, O Ficker5, C Reux6, M Lehnen7, N Eidietis8, S Silburn2, and JET Contributors*

1MIT PSFC, USA 2CCFE, UK 3Royal Institute of Technology, Sweden 4Chalmers, Sweden 5IPP of the CAS, Czech Republic 6CEA, France 7ITER Organization, France 8General Atomics, USA

*See author list of E Joffrin et al 2019 Nucl. Fusion 59 112021

This work has been carried out within the framework of the EUROfusion Consortium and has received funding from the Euratom research and training programme 2014-2018 and 2019-2020 under grant agreement No 633053. The views and opinions expressed herein do not necessarily reflect those of the European Commission, or ITER Organization.
Outline + main takeaways

• **Synchrotron radiation** from relativistic runaway electrons is (mostly) **linearly-polarized**
Outline + main takeaways

• **Synchrotron radiation** from relativistic runaway electrons is (mostly) **linearly-polarized**

• The **intensity**, **fraction**, and **angle** of this polarized light can give insight into the **spatiotemporal evolution** of the runaway **current density** and **pitch angle** distribution
Outline + main takeaways

• Synchrotron radiation from relativistic runaway electrons is (mostly) **linearly-polarized**

• The **intensity**, **fraction**, and **angle** of this polarized light can give insight into the **spatiotemporal evolution** of the runaway **current density** and **pitch angle** distribution

• **First-time** measurements were made with the JET MSE polarimeter for 50+ post-disruption runaway beams
Outline + main takeaways

- **Synchrotron radiation** from relativistic runaway electrons is (mostly) **linearly-polarized**

- The **intensity**, **fraction**, and **angle** of this polarized light can give insight into the **spatiotemporal evolution** of the runaway **current density** and **pitch angle** distribution

- **First-time** measurements were made with the JET MSE polarimeter for **50+** post-disruption runaway beams

- Preliminary SOFT simulations indicate sensitivities to the beam **position/shape**, **safety factor**, and **pitch angle**
Synchrotron emission polarization and detection
Diagnostics often only see part of the synchrotron emission “cone”
Diagnostics often only see part of the synchrotron emission “cone”
Diagnostics often only see part of the synchrotron emission “cone”

pitch angle: \[\sin \theta_p \propto |\vec{v} \times \vec{B}| \]
Diagnostics often only see part of the synchrotron emission “cone”

pitch angle: \(\sin \theta_p \propto |\vec{v} \times \vec{B}| \)

polarization: \(\vec{E} \propto \vec{v} \times \vec{B} \)
Synchrotron measurements depend on…

- **Detector geometry** – known

- **Magnetic geometry** – depends on the runaway current density (unknown)

- **Runaway distribution function** – can be constrained
Polarimeter of the Motional Stark Effect (MSE) diagnostic is used to measure...

- Total **intensity** of polarized light – spatial profile

- **Fraction** (degree) of linear polarization

- Polarization **angle** – measured w.r.t. the vertical
MSE system on JET ($\lambda \approx 660 \text{ nm}, \Delta \lambda \approx 1 \text{ nm}$)
MSE system on JET ($\lambda \approx 660$ nm, $\Delta \lambda \approx 1$ nm)
Polarimeter data can complement fast camera images

Camera (KLDT-E5WE)

λ ≈ 450 – 700 nm

JPN 94552, t = 8.2s

MSE
Measurements from disruption-generated runaway beams in JET
To do…

- I still need to consider reflected light from the metal ITER-like wall

- I use the standard EFIT magnetic geometry, but need to verify its goodness-of-fit/applicability

- I need to justify/verify polarization angle measurements for low polarization fractions (~0)
‘Typical’ runaway beam

- Disruption triggered at $t = 8.0\,\text{s}$.
- Runaway beam forms $\sim500\,\text{kA}$.
- Beam position is vertically stable.
- SPI trigger at $t = 8.4\,\text{s}$ failed.
- MHD activity at $t = 8.6\,\text{s}$.
‘Typical’ runaway beam

- Disruption triggered at $t = 8.0 \text{ s.}$
- Runaway beam forms $\sim 500 \text{ kA.}$
- Beam position is vertically stable.
- SPI trigger at $t = 8.4 \text{ s}$ failed.
- MHD activity at $t = 8.6 \text{ s.}$

- Intensity spans 2 orders of magnitude.
‘Typical’ runaway beam

- Disruption triggered at $t = 8.0 \text{ s}$.
- Runaway beam forms $\sim 500 \text{ kA}$.
- Beam position is vertically stable.
- SPI trigger at $t = 8.4 \text{ s}$ failed.
- MHD activity at $t = 8.6 \text{ s}$.

- Intensity spans 2 orders of magnitude.

- Polarization fraction ranges $[0,1]$.

![Graph showing the intensity and polarization fraction over time.](image)
‘Typical’ runaway beam

- Disruption triggered at $t = 8.0 \, \text{s}$.
- Runaway beam forms $\sim 500 \, \text{kA}$.
- Beam position is vertically stable.
- SPI trigger at $t = 8.4 \, \text{s}$ failed.
- MHD activity at $t = 8.6 \, \text{s}$.

- Intensity spans 2 orders of magnitude.

- Polarization fraction ranges $[0,1]$.

- Polarization is mostly vertical (0°).
- Some horizontally-polarized (90°) light is seen at $r_{\text{tan}}/a \sim 0.5$,
 but for low polarization fractions ~ 0.
Argon SPI successfully triggered at $t = 8.4$ s.
Does pitch angle scattering cause bright flash? Reduce polarization fraction? Change pol. angle?
Do these data indicate an evolving runaway current density profile?

- D2 SPI triggered at $t = 8.4$ s.
- Runaway current increases!
- Beam suddenly disappears (disrupts?) at $t \sim 8.7$ s.

- Beam appears to decrease in size and intensity as current increases.

- Polarization fraction ~ 0 ‘follows’ radially-inward motion.

- So does transition from vertical-to-horizontal polarization.
 (Caution: low pol. fraction values)
Preliminary results from the synthetic diagnostic SOFT

M Hoppe et al 2018 Nuclear Fusion 58 026032
Synchrotron-detecting Orbit Following Toolkit
M Hoppe et al 2018 Nuclear Fusion 58 026032

Inputs

• Detector geometry
• Magnetic geometry (EFIT)
• Phase space distribution $f(r, p, \theta_p)$ (optional)

Outputs

• Spectra
• Images
• Polarization information
• Detector response function $\hat{G}(r, p, \theta_p)$
Preliminary SOFT results differ slightly from experiment.

Note: We only had time to run SOFT for this early pulse and not for the other pulses shown in this presentation.
Preliminary SOFT results differ slightly from experiment

Note: We only had time to run SOFT for this early pulse and not for the other pulses shown in this presentation.
Preliminary SOFT results differ slightly from experiment

From SOFT:
- Polarization fractions > 0.5 ✗
- All **vertically**-polarized light ✓

→ Discrepancy due to incorrect magnetic geometry from EFIT?

Note: We only had time to run SOFT for this early pulse and not for the other pulses shown in this presentation.
Detection of horizontal polarization at the edge depends on the safety factor

For MSE channel 10, with line-of-sight

\[R_{\text{tan}} = 3.43 \text{ m}, \quad r_{\text{tan}}/a = 0.43 \]

what is the detected polarization angle for runaways with a given energy, \(p/mc \)

pitch angle, \(\theta_p \)

and safety factor profile

\[q(r) = \frac{2q_0}{2 - (r/a)^2} \]
Detection of horizontal polarization at the edge depends on the safety factor

For MSE channel 10, with line-of-sight
\[R_{\text{tan}} = 3.43 \text{ m}, \quad r_{\text{tan}}/a = 0.43 \]

what is the detected polarization angle for runaways with a given energy, \(p/mc \), pitch angle, \(\theta_p \), and safety factor profile

\[q(r) = \frac{2q_0}{2-(r/a)^2} \]
Detection of horizontal polarization at the edge depends on the safety factor

For MSE channel 10, with line-of-sight

\[R_{\tan} = 3.43 \text{ m}, \quad r_{\tan}/a = 0.43 \]

what is the detected polarization angle for runaways with a given energy, \(p/mc \), pitch angle, \(\theta_p \), and safety factor profile

\[q(r) = \frac{2q_0}{2 - (r/a)^2} \]

\(q_0 = 1 \)

\(q_0 = 3 \)
Polarization fraction measurements at the edge are highly sensitive to the safety factor q_0.

For MSE channel 5, with line-of-sight

$R_{\tan} = 3.63 \text{ m, } r_{\tan}/a = 0.63$

what is the detected **polarization fraction** for runaways with a given energy, p/mc

pitch angle, θ_p

and safety factor profile

$$q(r) = \frac{2q_0}{2 - (r/a)^2} ?$$
Polarization fraction measurements at the edge are highly sensitive to the safety factor $q_0 = 1$

For MSE channel 5, with line-of-sight $R_{\text{tan}} = 3.63 \text{ m}$, $r_{\text{tan}}/a = 0.63$

what is the detected polarization fraction for runaways with a given energy, p/mc pitch angle, θ_p

and safety factor profile $q(r) = \frac{2q_0}{2 - (r/a)^2}$?

![Graph showing polarization fraction with safety factor profile $q_0 = 3$. The graph includes a color scale ranging from 0% to 100% and coordinates for p/mc, θ_p.](image-url)
Polarization fraction measurements at the edge are highly sensitive to the safety factor

For MSE channel 5, with line-of-sight

\[R_{\text{tan}} = 3.63 \text{ m}, \frac{r_{\text{tan}}}{a} = 0.63 \]

what is the detected polarization fraction for runaways with a given

energy, \(\frac{p}{mc} \)

pitch angle, \(\theta_p \)

and safety factor profile

\[q(r) = \frac{2q_0}{2 - (r/a)^2} \]
Main takeaways

• **Synchrotron radiation** from relativistic runaway electrons is (mostly) **linearly-polarized**

• The **intensity**, **fraction**, and **angle** of this polarized light can give insight into the **spatiotemporal evolution** of the runaway **current density** and **pitch angle** distribution

• **First-time** measurements were made with the JET MSE polarimeter for **50+** post-disruption runaway beams

• Preliminary SOFT simulations indicate sensitivities to the beam **position/shape**, **safety factor**, and **pitch angle**
Outlook using polarization data

If we can understand the evolution of the runaway pitch angle distribution and current profile, then we can…

- Better constrain runaway momentum space dynamics
- Effectively know the runaway density profile
- Compare with forward-evolution models
- Investigate the effects of mitigation (e.g. MGI or SPI), especially on pitch angle scattering
- Better understand the ‘disruptions’ of increasing-current runaway beams (e.g. due to kink instability?)
References

Bonus
Strange runaway beam

- SPI triggered 4 ms after TQ.
- Current first increases, then decreases.
- Really strange spatiotemporal dynamics observed.

- Intensity saturates at $r_{\text{tan}}/a \sim 0.5$, but then falls below the noise floor for $t > 9.8$ s ($I_r < 500$ kA).

- Snakelike pattern observed for polarization fraction ~ 0.

- Similar strange evolution in polarization angle.
Fast mitigation

- SPI at $t = 22.5$ s, pellet breaks into three pieces.

- Still measure polarized synchrotron emission during fast runaway loss.

- Intensity is brightest on the high field side.

- Polarization fraction ~ 0 everywhere.

- Polarization is primarily horizontal. (Caution: low pol fraction values)
Another increasing runaway beam current

- D2 SPI at $t = 8.4$ s.
- Ne SPI at $t = 8.6$ s.

- Beam appears to decrease in size as current increases.

- Broad region of low polarization fraction.

- Broad region of horizontal polarization, due to view of the top of the runaway beam?
Synchrotron radiation is emitted primarily in the runaway’s direction of motion

linear polarization: \(\vec{E} \propto \vec{v} \times \vec{B} \)