Analysis of Runaway Electron Synchrotron Emission in Alcator C-Mod

A. Tinguely1, R. Granetz1, A. Stahl2

Monday, June 6, 2016
Runaway Electron Meeting 2016
Pertuis, France

1Plasma Science and Fusion Center, Massachusetts Institute of Technology, Cambridge, MA, USA
2Chalmers University of Technology, Gothenburg, Sweden
Runaway electrons in C-Mod

Alcator C-Mod plasma parameters:

- $B_{\text{tor}} = 2 - 8$ T
- $I_p = 0.5 - 2$ MA
- $\bar{n}_e = 0.2 - 4 \times 10^{20}$ m$^{-3}$
- $T_{e0} = 1 - 8$ keV
- $R = 0.68$ m, $a = 0.22$ m

Synchrotron radiation (SR) can be in the visible/near-infrared range (300-1000 nm).
Motivation

Q: From SR, can we distinguish a mono-energetic (and mono-pitch) RE distribution from a continuum distribution of energies and pitches?

• Recent studies [1-3] have predicted that REs will accelerate to a maximum energy at which the radiative force and collisional friction balances the electric force, forming a “bump” on the tail of the energy distribution function.

• Others [4,5] suggest that a broader distribution contributes to the SR spectra.

• Knowing the maximum energy of REs – as determined by the distribution – can have important implications for RE mitigation in fusion devices.

Motivation

Q: From SR, can we distinguish a \textit{mono-energetic} (and mono-pitch) RE distribution from a \textit{continuum distribution} of energies and pitches?

A: Not yet...
Experimental setup

Data is collected using an absolutely-calibrated spectrometer installed on C-Mod, with spectral range of \(~350\text{-}1020\) nm.
Experimental setup

Data is collected using an absolutely-calibrated spectrometer installed on C-Mod, with spectral range of ~350-1020 nm.

View outside vessel View inside vessel Toroidal cross section of C-Mod
Experimental setup

Data is collected using an absolutely-calibrated spectrometer installed on C-Mod, with spectral range of ~350-1020 nm.
Experimental setup

Data is collected using an absolutely-calibrated spectrometer installed on C-Mod, with spectral range of ~350-1020 nm.
Look at 3 different runaway shots
Look at 3 different runaway shots

- Flattop RE
- Ramp-up RE
- Early RE

Synchrotron Emission
Look at 3 different runaway shots

- Flattop RE
- Ramp-up RE
- Early RE

Synchrotron Emission
Flattop synchrotron emission data

Plasma parameters at $t = 1.5$ s:

- $B_t = 5.35$ T
- $I_p \approx 1$ MA (end of flat-top)
- $\bar{n}_e = 2.5 \cdot 10^{19}$ m$^{-3}$
- $T_{e0} = 4.25$ keV
- $a_{beam} \approx 5$ cm (as seen by camera)
- $V_{loop} = 1.05$ V
 \[\Rightarrow E = 0.25 \text{ V/m} \]
 \[\Rightarrow \frac{E}{E_c} = 12 \]

The red highlighted data is at $t = 1.5$ s and is used in this analysis.
The red highlighted data is at $t = 1.5$ s and is used in this analysis.
Two models for the RE distribution

For a **mono-energetic** and mono-pitch RE beam, the brightness (W/m3/sr) is [6]:

$$B_{\text{mono}}(\lambda, \theta, p) = \frac{2 R n_r}{\pi \theta_{\text{eff}}(p, \theta)} P(\lambda, \theta_{\text{eff}}, p)$$

where n_r is the density of REs emitting SR, $\theta = v_\perp/v_\parallel = p_\perp/p_\parallel$ is the pitch, and $p = \sqrt{E^2/m^2c^4} - 1$ is the normalized momentum.

Two models for the RE distribution

For a **mono-energetic** and mono-pitch RE beam, the brightness \((W/m^3/sr)\) is [6]:

\[
B_{\text{mono}}(\lambda, \theta, p) = \frac{2 R n_r}{\pi \theta_{\text{eff}}(p, \theta)} P(\lambda, \theta_{\text{eff}}, p)
\]

where \(n_r\) is the density of REs emitting SR, \(\theta = v_\perp/v_\parallel = p_\perp/p_\parallel\) is the pitch, and \(p = \sqrt{E^2/m^2c^4 - 1}\) is the normalized momentum.

For a **distribution**, \(f_{RE}\), of energies and pitches [7],

\[
f_{RE}(p_\parallel, p_\perp) = \frac{n_r E}{2\pi c z p_\parallel ln\Lambda} \exp \left(- \frac{p_\parallel}{c z ln\Lambda} - \frac{E p_\perp^2}{2 p_\parallel} \right),
\]

the brightness \((W/m^3/sr)\) is [4]:

\[
B_{\text{dist}}(\lambda) = 4R \int \frac{1}{\theta_{\text{eff}}(p_\parallel, p_\perp)} P(\lambda, \theta_{\text{eff}}, p) f_{RE}(p_\parallel, p_\perp) dp_\parallel dp_\perp
\]

Two models for the RE distribution

For a **mono-energetic** and mono-pitch RE beam, the brightness (W/m³/sr) is [6]:

\[B_{\text{mono}}(\lambda, \theta, p) = \frac{2R}{\pi \theta_{\text{eff}}(p, \theta)} n_r p(\lambda, \theta_{\text{eff}}, p) \]

where \(n_r \) is the density of REs emitting SR, \(\theta = v_\perp/v_\parallel = p_\perp/p_\parallel \) is the pitch, and \(p = \sqrt{E^2/m^2c^4 - 1} \) is the normalized momentum.

For a **distribution**, \(f_{RE} \), of energies and pitches [7],

\[f_{RE}(p_\parallel, p_\perp) = \frac{n_r E}{2\pi c z p_\parallel \ln \Lambda} \exp \left(-\frac{p_\parallel}{c z \ln \Lambda} - \frac{E p_\perp^2}{2p_\parallel} \right), \]

the brightness (W/m³/sr) is [4]:

\[B_{\text{dist}}(\lambda) = 4R \int \frac{1}{\theta_{\text{eff}}(p_\parallel, p_\perp)} p(\lambda, \theta_{\text{eff}}, p) f_{RE}(p_\parallel, p_\perp) p_\perp dp_\parallel dp_\perp \]

The RE **density**, \(n_r \), is estimated [4,6] using the plasma current carried by the REs, \(I_r \), and cross-sectional area, \(A_r \), of the beam (as seen by our cameras):

\[n_r = I_r / (ecA_r) \]

During the discharge, we do not know \(I_r \), so we have to fit the data by varying the RE current for both the mono-energetic and continuum distributions.

Mono-energetic fit matches **flattop** data

- This data can be well-fit for a range of RE energies, pitches, and currents:

 \[24.8 \text{ MeV} \leq E_{\text{mono}} \leq 30.6 \text{ MeV}\]
 \[0.070 \leq \theta = \frac{v_\perp}{v_\parallel} \leq 0.125\]
 \[77 \text{ A} \leq I_{r,\text{ mono}} \leq 82 \text{ A}\]

- Assuming all REs emit SR at 28 MeV and pitch of 0.09, this means they only carry \(\sim 100 \text{ A}\) of the 1 MA plasma current.

\[
\begin{align*}
E_{\text{avg}} &= 28.0 \text{ MeV} \\
\theta_{\text{avg}} &= 0.09 \\
I_{r,\text{avg}} &= 81 \text{ A}
\end{align*}
\]
Continuum distribution matches flattop data

This best fit calculates:

- $E_{\text{max,dist}} = 19.7$ MeV
 - About 10 MeV less than E_{mono}

- $I_{r,\text{dist}} = 3.5$ kA
 - Accounts for <1% of the total plasma current, but more than $I_{r,\text{mono}}$

- $Z_{\text{eff,dist}} = 3$
 - Lower bound of fitting range (3 – 7).
Both **flattop** fits are comparable

The **mono-energetic** and **continuum distribution** fits are very similar, with about the same goodness of fit.
Both ME and CD fits are again comparable.

Early Runaways

- $E_{\text{max, dist}} = 14.6$ MeV
- $I_{r, \text{dist}} = 4.6$ kA
- $Z_{\text{eff}} \sim 10$

$E_{\text{avg}} = 28.1$ MeV
$\theta_{\text{avg}} = 0.1$
$I_{r, \text{avg}} = 118$ A

Plasma parameters at $t = 0.18$ s:

- $B_t = 5.24$ T
- $I_p \approx 670$ kA
- $\bar{n}_e = 5.9 \cdot 10^{19}$ m$^{-3}$
- $T_{e0} = 2.5$ keV
- $a_{\text{beam}} \approx 6$ cm (as seen by camera)
- $V_{\text{loop}} \approx 2.3$ V

$\Rightarrow E = 0.54$ V/m
$\Rightarrow E/E_c \approx 11$
Both ME and CD fits are again comparable.

Ramp-up Runaways

Plasma parameters at t = 0.54 s:

- $B_t = 5.36$ T
- $I_p \approx 800$ kA
- $n_e = 6.6 \times 10^{19}$ m$^{-3}$
- $T_{e0} = 2.3 - 3.2$ keV
- $a_{beam} \approx 7$ cm (as seen by camera)
- $V_{loop} \approx 1.1$ V
 \[\Rightarrow E = 0.26 \text{ V/m} \]
 \[\Rightarrow E/E_c \approx 4.8 \]
Use CODE [5,9] to solve the forward problem

- Time dependent parameters:
 - $T_{e0}(t)$
 - $\bar{n}_e(t)$
 - $V_{\text{loop,0}}(t) \rightarrow E(t)$
 - $Z_{\text{eff}}(t)$
 - $B \rightarrow \text{Synchrotron}$

- Secondary avalanching source:
 - Rosenbluth-Putvinskii (RP) [10]
 - Chiu-Harvey (CH) [11,12]

Use CODE [5,9] to solve the forward problem

- Time dependent parameters:
 - $T_{e0}(t)$
 - $\bar{n}_e(t)$
 - $V_{\text{loop},0}(t) \rightarrow E(t)$
 - $Z_{\text{eff}}(t)$
 - $B \rightarrow \text{Synchrotron}$

- Secondary avalanching source:
 - Rosenbluth-Putvinskii (RP) [10]
 - Chiu-Harvey (CH) [11,12]

Bump forms on tail of Early Runaway distribution

- Avalanche populates lower energies

\[F \approx 2 E_{\text{MeV}} \]
Bump forms on tail of **Early Runaway** distribution

- Avalanche populates lower energies
- **RP Avalanche** extends tail

Parallel CODE distribution, \(t = 0.1789 \) s

\[
\frac{1}{E^{2}} \text{MeV}
\]

\(p \) vs. \(\sim 2E_{\text{MeV}} \)
Bump forms on tail of **Early Runaway** distribution

- Avalanche populates lower energies
- **RP Avalanche** extends tail
- **CH Avalanche** matches **No Avalanche** case at high energies
 - Primary (Dreicer [13]) generation dominates

![Parallel CODE distribution, t = 0.1789 s](image)

\[F \sim 2E^{\frac{1}{2}}_{\text{MeV}} \]

Bump forms on tail of Early Runaway distribution

- Avalanche populates lower energies
- **RP Avalanche** extends tail
- **CH Avalanche** matches **No Avalanche** case at high energies
 → Primary (Dreicer [13]) generation dominates
- **No Synchrotron** case still forms bump
 → Dynamic plasma parameters can form bump

\[\sim 2E_{\text{MeV}} \]

Bump forms on tail of Early Runaway distribution

- Avalanche populates lower energies
- **RP Avalanche** extends tail
- **CH Avalanche** matches No Avalanche case at high energies
 - Primary (Dreicer [13]) generation dominates
- **No Synchrotron** case still forms bump
 - Dynamic plasma parameters can form bump
 - **Synchrotron limits bump energy**

Synchrotron power loss more easily seen in 2D

- No Avalanche, $t = 0.0600 \text{ s}$
- Rosenbluth-Putvinskii, $t = 0.0600 \text{ s}$
- CH, No Synchrotron, $t = 0.0600 \text{ s}$
- Chiu-Harvey, $t = 0.0600 \text{ s}$
Synchrotron power loss more easily seen in 2D
Summary and future work

Mono-energetic and continuum distribution calculations both fit C-Mod experimental data equally well. A time-dependent CODE model of one C-Mod runaway discharge calculates a bump on the tail of the energy distribution function which is:

- Dominated by primary generation
- Limited by synchrotron radiation
- Formed by dynamic plasma parameters

Next steps:

- Calculate the synchrotron brightness from CODE’s distribution functions and compare to experiment
- Run CODE for the other runaway discharges
- Use a non-linear solver for discharges with runaway fractions > 10-15% (see Adam Stahl’s presentation Wednesday, 9:30am)
References

Backup slides
Runaway electrons in C-Mod

Alcator C-Mod plasma parameters:

\[\text{B}_{\text{tor}} = 2 - 8 \text{ T} \]
\[I_p = 0.5 - 2 \text{ MA} \]
\[\bar{n}_e = 0.2 - 2 \cdot 10^{20} \text{ m}^{-3} \]
\[T_{e0} = 1 - 5 \text{ keV} \]

Synchrotron radiation (SR) can be in the visible/near-infrared range (300-1000 nm).
Look at 3 different runaway shots
Ramp-up synchrotron emission data

Plasma parameters at $t = 0.54$ s:

- $B_t = 5.36$ T
- $I_p \approx 800$ kA
- $\bar{n}_e = 6.6 \cdot 10^{19}$ m$^{-3}$
- $T_{e0} = 2.3 - 3.2$ keV
- $a_{\text{beam}} \approx 7$ cm (as seen by camera)
- $V_{\text{loop}} \approx 1.1$ V

$\Rightarrow E = 0.26$ V/m
$\Rightarrow E/E_c \approx 4.8$

The red highlighted data is at $t = 0.54$ s and is used in this analysis.
Ramp-up synchrotron emission data

The red highlighted data is at $t = 0.54$ s and is used in this analysis.
Early synchrotron emission data

Plasma parameters at $t = 0.18$ s:

- $B_t = 5.24$ T
- $I_p \approx 670$ kA
- $\bar{n}_e = 5.9 \cdot 10^{19}$ m$^{-3}$
- $T_{e0} = 2.5$ keV
- $a_{\text{beam}} \approx 6$ cm (as seen by camera)
- $V_{\text{loop}} \approx 2.3$ V

$\Rightarrow E = 0.54$ V/m

$\Rightarrow E/E_c \approx 11$
Early synchrotron emission data

The red highlighted data is at $t = 0.18$ s and is used in this analysis.
Both **flattop** fits are comparable

- The **mono-energetic** and **continuum distribution** fits are very similar, with about the same goodness of fit.

- There is a **brightness feature** that cannot be fit by either.
 - Maybe we need a different RE distribution?
 - Or perhaps this is a result of a calibration error?
Both **flattop** fits are comparable

- \[\text{resnorm} = \sum_{\lambda} [\text{data}(\lambda) - \text{fit}(\lambda)]^2 \]
 - Goodness of fit
 - MATLAB’s \textit{lsqcurvefit} was used to perform a nonlinear least squares fit to the two models.
 - We assume that each data point has the same uncertainty.

- \[\text{resnorm}_{\text{mono}} = 1.4 \cdot 10^{-12} \]
- \[\text{resnorm}_{\text{dist}} = 1.2 \cdot 10^{-12} \]
Both ramp-up fits are comparable

- The mono-energetic and continuum distribution fits are again very similar.
 - $E_{\text{avg}} = 30.2$ MeV
 - $\theta_{\text{avg}} = 0.1$
 - $I_{r,\text{avg}} = 40$ A
 - $E_{\text{max, dist}} = 12.6$ MeV
 - $I_{r,\text{dist}} = 933$ A
 - $T_{e,\text{dist}} = 3.2$ keV
Both ME and CD fits are again comparable.

Early Runaways
- $E_{\text{avg},\text{dist}} = 28.1$ MeV
- $\theta_{\text{avg}} = 0.1$
- $I_{r,\text{avg}} = 118$ A
- $E_{\text{max},\text{dist}} = 14.6$ MeV
- $I_{r,\text{dist}} = 4.6$ kA
- $Z_{\text{eff}} \sim 10$

Ramp-up Runaways
- $E_{\text{avg}} = 30.2$ MeV
- $\theta_{\text{avg}} = 0.1$
- $I_{r,\text{avg}} = 40$ A
- $E_{\text{max},\text{dist}} = 12.6$ MeV
- $I_{r,\text{dist}} = 933$ A
- $T_{e,\text{dist}} = 3.2$ keV
“Bump on tail” formation

• In [1], the energy at which REs converge is calculated as a function of Z_{eff}, which we were not able to measure for the flattop data (shot 1151002022).

• For the plasma parameters at $t = 1.5$ s, a mono-energetic RE beam of 28 MeV is produced by a $Z_{\text{eff,mono}}$ of ~ 4, which is consistent with experiments on C-Mod. [8]

• This also means that C-Mod’s high Z_{eff} (3-7) in RE-producing plasma conditions could limit the RE energy to < 30 MeV.

Runaway electrons

- In plasmas, the Coulomb collision frequency between particles varies as \(\frac{\text{density}}{\text{velocity}^3} \).
- This can lead to a cascade of relativistic “runaway” electrons (REs) with energies of tens of MeV.
- Relativistic charged particles emit a cone of synchrotron radiation (SR) in their direction of motion.
- In C-Mod, this radiation can be in the visible/near-infrared range (300-900 nm).
Camera view of SR

Synchrotron emission
Camera view of SR

Parameters:
- $R = 68 \text{ cm} - \text{C-Mod major radius}$
- $a = 22 \text{ cm} - \text{C-Mod minor radius}$
- $a_{\text{beam}} \approx 5 \text{ cm} - \text{radius of RE beam}$
- $A_{\text{beam}} \approx 80 \text{ cm}^2 - \text{area of RE beam}$
- $r_{\text{lens}} = 9 \text{ mm} - \text{lens aperture}$
- $r_0 = 1.77 \text{ m} - \text{distance from lens to tangency radius (SR)}$
Time evolution: Mono-energetic RE beam

- $t = 1.33\text{s}$
 - $E_{\text{avg}} = 24.3\text{ MeV}$, $\sigma_E = 1.8\text{ MeV}$
 - $\theta_{\text{avg}} = 0.08$, $\sigma_\theta = 0.02$
 - $I_{\text{avg}} = 48\text{ A}$, $\sigma_f = 2\text{ A}$
Time evolution: Mono-energetic RE beam

- $t = 1.33s$
 - $E_{avg} = 24.3$ MeV, $\sigma_E = 1.8$ MeV
 - $\theta_{avg} = 0.08$, $\sigma_\theta = 0.02$
 - $I_{avg} = 48$ A, $\sigma_I = 2$ A

- $t = 1.50s$
 - $E_{avg} = 28.0$ MeV, $\sigma_E = 1.2$ MeV
 - $\theta_{avg} = 0.09$, $\sigma_\theta = 0.01$
 - $f_{avg} = 81$ A, $\sigma_f = 1$ A
Non-monotonic brightness?
Full power calculation

The power radiated by a relativistic electron in a tokamak is given by [A]:

\[P_{\text{full}}(\lambda) = \frac{ce^2}{\epsilon_0\lambda^3\gamma^2} \left\{ \int_0^\infty \frac{1 + 2y^2}{y} J_0(ay^3) \sin \left(\frac{3}{2} \xi \left(y + \frac{1}{3}y^3 \right) \right) dy \right. \\
+ \left. \frac{4\eta}{1 + \eta^2} \int_0^\infty y J_1(ay^3) \cos \left(\frac{3}{2} \xi \left(y + \frac{1}{3}y^3 \right) \right) dy \right\} - \frac{\pi}{2} \}

where

\[a = \frac{\xi\eta}{(1 + \eta^2)}, \quad \xi = \frac{4\pi}{3} \frac{R}{\lambda\gamma^3\sqrt{1+\eta^2}}, \quad \eta \approx \frac{eB}{m\gamma c} \frac{v_\perp}{v_\parallel} \]

and \(\frac{v_\perp}{v_\parallel} \) is the pitch and \(\gamma = E/mc^2 \) is the relativistic Lorentz factor.

Power density approximation

• Using the approximation:

\[\lambda \ll \frac{4\pi}{3} R \eta/[\gamma^3 (1 + \eta)^3] \]

the power calculation reduces to [B] :

\[P_{as2} (\lambda) = \frac{\sqrt{3}}{8\pi \varepsilon_0 \lambda^2 R} \frac{c e^2 \gamma (1+\eta)^2}{\sqrt{\eta}} \exp\left(- \frac{4\pi}{3} \frac{R}{\lambda \gamma^3} \frac{1}{1+\eta} \right) \]

• This approximation is only valid for C-Mod at low energies (~25MeV).

Mono-energetic brightness

For a mono-energetic (mono-pitch) beam, the brightness (W/m³/sr) is [C]:

\[B(\lambda, \theta_{eff}, \gamma) = \frac{2 R n_r}{\pi \theta_{eff}} P(\lambda, \theta_{eff}, \gamma) \]

where

\[\theta_{eff} \approx \sqrt{\left(\frac{v_{\perp}}{v_{\parallel}}\right)^2 + \gamma^{-2} + \left(\frac{n_{\text{ens}}}{r_0}\right)^2} \]

is the effective viewing aperture and \(n_r \) is the runaway beam density at this energy.

Distribution of energies and pitches

For a distribution of energies and pitch angles [D]:

\[f_{RE}(p_\parallel, p_\perp) = \frac{n_r \hat{E}}{2\pi c_z p_\parallel \ln \Lambda} \exp \left(- \frac{p_\parallel}{c_z \ln \Lambda} - \frac{\hat{E} p_\perp^2}{2p_\parallel} \right) \]

The brightness is calculated [E]:

\[B(\lambda) = 4R \int_0^1 \int_{p_{\text{min}}}^{p_{\text{max}}} \frac{1}{\theta_{eff}(\chi)} P(\lambda, \theta_{eff}(\chi), \gamma(p)) f_{RE}(p, \chi)p^2 dp d\chi \]

Acknowledgments

Many thanks to Adam Stahl and the entire Chalmers Plasma Theory group for CODE, debugging, and fruitful discussions on runaway evolution.

Dr. Bob Mumgaard is gratefully acknowledged for his assistance in absolutely calibrating the Ocean Optics spectrometers and calculating the brightness.